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Overview

Background

Automatic parallelization

Most of our computers rely on parallel processors (multi-cores, GPUs),
but most of the programs that we have or write are serial ones.
Writing efficient parallel programs is very hard, hence automatic
generation of parallel code from serial one is a dramatically needed:
In general, automatic generation of parallel code is even harder, but
makes sense for kernels in scientific computing (dense linear and
polynomial algebra, stencil computations).

From C to CUDA

In automatic generation of GPU code from C code, it is desirable that
the generated GPU code depends on parameters (thread-block size,
memory sizez, etc.) so as to improve portability and efficiency.
Standard techniques (like the polyhedron model) rely on solving
systems of linear equations and inequalities.
However, parametric programs (say, in CUDA) introduce non linear
expressions requiring polynomial system solvers, in particular QE tools.
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Overview

Our work

1 We illustrate the need of CUDA programs (more precisely, kernels) that
depend on program parameters and machine parameters.

2 We show that techniques from symbolic computation can effectively
handle the necessary algebraic computations (i.e. quantifier
elimination).

3 We report on a preliminary implementation of a generator of parametric
CUDA kernels from input MetaFork programs.

4 Experimental results show the benefits of generating parametric CUDA
kernels.

5 Our work relies on two of our other projects: the RegularChains

library in Maple and the MetaFork compilation framework.
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A complete example: Jacobi

for (int t = 0; t < T; ++t) {

for (int i = 1; i < N-1; ++i)

b[i] = (a[i-1]+a[i]+a[i+1])/3;

for (int i = 1; i < N-1; ++i)

a[i] = b[i];

}

Original C code.

int ub_v = (N - 2) / B;

meta_schedule {

for (int t = 0; t < T; ++t) {

meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {

int p = v * B + u + 1;

int y = p - 1;

int z = p + 1;

b [ p ]= (a [ y ] + a [ p ] + a [ z ]) / 3;

}

}

meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {

int w = v * B + u + 1;

a [ w ] = b [ w ];

}

}

}

}

MetaFork code obtained via quantifier elimination.

In generating CUDA code from C, we use MetaFork as an intermediate language.
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A complete example: Jacobi

int *dev_a;

int *dev_b;

cudaCheckReturn(cudaMalloc((void **) &dev_a, (N) * sizeof(int)));

cudaCheckReturn(cudaMalloc((void **) &dev_b, (N) * sizeof(int)));

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

{

if (N >= 1) {

cudaCheckReturn(cudaMemcpy(dev_a, a, (N) * sizeof(int),

cudaMemcpyHostToDevice));

cudaCheckReturn(cudaMemcpy(dev_b, b, (N) * sizeof(int),

cudaMemcpyHostToDevice));

}

for (int c0 = 0; c0 < T; c0 += 1) {

{

dim3 k0_dimBlock(B);
dim3 k0_dimGrid(ub_v <= 32767 ? ub_v : 32768);

kernel0 <<<k0_dimGrid, k0_dimBlock, (B+2)*sizeof(int)>>>
(dev_a, dev_b, N, T, ub_v, B, c0);

cudaCheckKernel();

}

{

dim3 k1_dimBlock(B);
dim3 k1_dimGrid(ub_v <= 32767 ? ub_v : 32768);

kernel1 <<<k1_dimGrid, k1_dimBlock, (B)*sizeof(int)>>>
(dev_a, dev_b, N, T, ub_v, B, c0);

cudaCheckKernel();

}

}

if (N >= 1) {

cudaCheckReturn(cudaMemcpy(a, dev_a, (N) * sizeof(int),

cudaMemcpyDeviceToHost));

cudaCheckReturn(cudaMemcpy(b, dev_b, (N) * sizeof(int),

cudaMemcpyDeviceToHost));

}

}

cudaCheckReturn(cudaFree(dev_a));

cudaCheckReturn(cudaFree(dev_b));

}

Generated CUDA Host code.

#include "jacobi_kernel.hu"

__global__ void kernel0(int *a, int *b, int N,

int T, int ub_v, int B, int c0)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_p;

int private_y;

int private_z;

extern __shared__ int shared_a[ ];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

for (int c1 = b0; c1 < ub_v; c1 += 32768) {

if (!t0) {

shared_a [ (B) ] = a [ (c1 + 1) * (B) ];

shared_a [ (B) + 1 ] = a [ (c1 + 1) * (B) + 1 ];

}

if (N >= t0 + (B) * c1 + 1)

shared_a [ t0 ] = a [ t0 + (B) * c1 ];

__syncthreads();

private_p = ((((c1) * (B)) + (t0)) + 1);

private_y = (private_p - 1);

private_z = (private_p + 1);

b [ private_p ] = (((shared_a [ private_y - (B) * c1 ] +

shared_a [ private_p - (B) * c1 ] ) +

shared_a [ private_z - (B) * c1 ] ) / 3);

__syncthreads();

}

}

CUDA kernel corresponding to the first loop nest.
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Parametric CUDA kernels

CUDA programs

CUDA kernels

A CUDA kernel is an SIMT (single instruction, multiple data) code
executed by all threads in a block and all blocks in a grid
The format (i.e. number of dimensions and their sizes) of the
thread-blocks and the grid are specified when the kernel is launched.
Formats are part of the definition of the CUDA program and we call
them program parameters.

__global__ void kernel0(int *a, int *b, int N, int T, int c0)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

for (int c1 = 32 * b0; c1 < N - 1; c1 += 1048576)

if (N >= t0 + c1 + 2 && t0 + c1 >= 1)

b[t0 + c1] = (((a[t0 + c1 - 1] + a[t0 + c1]) + a[t0 + c1 + 1]) / 3);

}

Above is a (non-parametric) version of the 1D Jacobi kernel shown before.
In the host code, grid and thread-blocks are 1D with 32 threads per block.
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Performance of CUDA programs

Execution of a kernel

All threads of a thread-block are executed logically in parallel by a
streaming multi-processor (SM).
In fact, an SM decomposes a thread-block into warps of (typically) 32
threads which are physically executed in parallel by the SM.
One SM may execute more than one thread-block concurrently. Of
course, there are hardware limits on the number of thread-blocks, warps
and threads that can be active on an SM.

Several performance measures

Total time spent in transfering data between the SMs and the main
(i.e. global) memory of the GPU device
Hardware occupancy, that is, the ratio of the number of active warps
on an SM to the maximum number of warps
Arithmetic intensity, that is, the number of arithmetic operations per
second (to be compared to the hardware limit).
Effective memory bandwidth, that is, the number of bytes read or
written from the global memory per second (to be coma-pared to the
hardware limit).
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Parametric CUDA kernels

Program & hardware parameters and their relation to performance

Program & machine parameters

GPU devices depend on hardware parameters: size of the memory of an
SM, maximum number of registers per thread, memory latencies, etc.
CUDA programs depend on program parameters (like formats) that
specify how the work is distributed among threads and thread-blocks.
Determining appropriate program parameters is essential for code
organization and, even more, for code performance.
Experimentation shows that program parameters depend on data sizes
and machine parameters, which may not be known at compile time.

Code optimization techniques

For a given GPU device, several standard recipes exist to increase one
of the performance measures (hardware occupancy, etc.)
One effective technique is to let the kernel code depend on a parameter
like the number of coefficients computed by a thread in a simulation or
stencil computation.
This strategy makes even more sense when the code is not targeting a
specific GPU device, but a range thereof.
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Parametric CUDA kernels: definition

Input

A GPU device with hardware parameters like the size Z of the memory
of an SM, the maximum number R of registers per threads, etc
A for-loop nest where some of the outermost for-loops can be executed
as parallel for-loops and the loop index ranges depend on parameters
n,m, p, . . . called data parameters.
Program parameters k, `, . . .

Output

Pairs (C1,K1), . . . , (Ce,Ke) where each of C1, . . . , Ce is a system of
constraints (equations and inequalities) on Z,R, . . . , n,m, p, . . .,
k, `, . . . and each of K1, . . . ,Ke is an SIMT code such that

1 for each i = 1 · · · e, for each value of (Z,R, . . . , n,m, p, . . . , k, `, . . .)
satisfying Ci, the kernel executes correctly on the specified GPU device;

2 for each value of n,m, p, . . . that make the loop nest execute correctly,
there exists 1 ≤ i ≤ e and values of k, `, . . . such that (Z,R, . . . , n,m,
p, . . ., k, `) satisfy Ci and Ki produces the same output as the loop-nest.
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Parametric CUDA kernels: toy example

Hardware parameters: maximum number R of registers per threads,
maximum number T of threads per thread-block, all other hardware
limits being ignored.
Program parameter: B the number of threads per thread-block.

For loop best with one parameter N :
for (int i=0; i<N; i++)

a[i] = b[i] + c[i];

The parametric kernel code consists of (C1,K1), (C2,K2) where:

C1 :

{
B ≤ T
R ≤ 8

__global__ void K1(int *a, int *b, int *c,

int N, int B)

{

int i = blockIdx.x * B + threadIdx.x;

if (i < N)

a[i] = b[i] + c[i];

}

K1 <<<N/B, B>>> (a,b,c,N,B)

C2 :

{
B ≤ T
R > 8

__global__ void K2(int *a, int *b, int *c,

int halfN, int B)

{

int i = blockIdx.x * B + threadIdx.x;

int j = i + halfN;

if (i < halfN)

a[i] = b[i] + c[i];

a[j] = b[j] + c[j];

}

halfN = N/2;

K2 <<<halfN/B, B>>> (a,b,c,halfN/B,B)
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Parametric CUDA kernels: remarks

Advantages

Hardware parameters do not need to be known at kernel code
generation time.
Once the kernel code is installed on the targeted hardware, hardware
parameters are known and the kernel code is specialized at those values.
Then, program parameters can be determined by auto-tuning
techniques so as to optimize code performance.
Of course, the selected kernel code Ki and the corresponding constraint
system Ci narrow the search.

Main challenges

Choosing which quantity can be a program parameter is a programer
decision; typical choice: thread-block formats
Generating the parametric kernel codes from the loop nest requires
non-linear equation handling more precisely: quantifier elimination.
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Generating Parametric CUDA kernels

Automatic parallelization: plain multiplication

Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){

c[i] = 0; c[i+n] = 0;

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

Dependence analysis suggests to set t(i, j) = n− j and p(i, j) = i + j.

Asynchronous parallel dense univariate polynomial multiplication

parallel_for (p=0; p<=2*n; p++){

c [ p ] =0;

for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]

+ A [ t+p-n ] * B [ n-t ] ;

}
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Generating parametric code & use of tiling techniques (1/2)

parallel_for (p=0; p<=2*n; p++){

c [ p ] =0;

for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]

+ A [ t+p-n ] * B [ n-t ] ;

}

Improving the parallelization

The above generated code is not practical for multicore implementation: the
number of processors is in Θ(n). (Not to mention poor locality!) and the work is
unevenly distributed among the workers.
We group the virtual processors (or threads) into 1D blocks, each of size B. Each
thread is known by its block number b and a local coordinate u in its block.
Blocks represent good units of work which have good locality property.
This yields the following constraints: 0 ≤ u < B, p = bB + u.
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Generating parametric code: using tiles (2/2)

We apply RegularChains:-QuantifierElimination on the left system
(in order to get rid off i, j) leading to the relations on the right:

o < n
0 ≤ i ≤ n
0 ≤ j ≤ n
t = n− j
p = i + j

0 ≤ b
o ≤ u < B
p = bB + u,



B > 0
n > 0

0 ≤ b ≤ 2n/B
0 ≤ u < B

0 ≤ u ≤ 2n−Bb
p = bB + u,

(1)

From where we derive the following program:

for (p=0; p<=2*n; p++) c [ p ] = 0;

parallel_for (b=0; b<= 2 n / B; b++) {

parallel_for (u=0; u<=min(B-1, 2*n - B * b); u++) {

p = b * B + u;

for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c [ p ] = c [ p ] + a [ t+p-n ] * b [ n-t ];

}

}
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Experimentation

Preliminary implementation

The Polyhedral Parallel Code Generator (PPCG) is a source-to-source
framework performing C- to-CUDA automatic code generation. PPCG
does not use parameters for the generated kernel code.
Our MetaFork C-to-CUDA translator is based on PPCG. In fact, we are
currently modifying the PPCG framework to take parameters into
account. Hence, our implementation is preliminary.

Figure : Components of MetaFork-to-CUDA generator of parametric code.
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Reversing an array

Speedup (kernel) Input size
Block size 223 224 225 226

PPCG
32 8.312 8.121 8.204 8.040

MetaFork
16 3.558 3.666 3.450 3.445
32 7.107 6.983 7.039 6.831
64 12.227 12.591 12.763 12.782

128 17.743 19.506 19.733 19.952
256 19.035 21.235 22.416 21.841
512 18.127 18.017 19.206 20.587

Table : Reversing a one-dimensional array



Experimentation

1D Jacobi

Speedup (kernel) Input size
Block size 213 214 215

PPCG
32 1.416 2.424 5.035

MetaFork
16 1.217 1.890 2.954
32 1.718 2.653 5.059
64 1.679 3.222 7.767

128 1.819 3.325 10.127
256 1.767 3.562 10.077
512 2.081 3.161 9.654

Table : 1D-Jacobi
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Matrix matrix multiplication

Speedup (kernel) Input size
Block size 210 211

PPCG
16 * 32 129.853 393.851

MetaFork
4 * 8 22.620 80.610
4 * 16 39.639 142.244
4 * 32 37.372 135.583
8 * 8 48.463 172.871
8 * 16 43.720 162.263
8 * 32 33.071 122.960

16 * 8 30.128 101.367
16 * 16 34.619 133.497
16 * 32 22.600 84.319

Table : Matrix multiplication
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LU decomposition

Speedup (kernel) Input size
Block size

kernel0, kernel1 212 213

PPCG
32, 16 * 32 31.497 39.068

MetaFork
32, 4 * 4 18.906 27.025
64, 4 * 4 18.763 27.316

128, 4 * 4 18.713 27.109
256, 4 * 4 18.553 27.259
512, 4 * 4 18.607 27.353

32, 8 * 8 34.936 52.850
64, 8 * 8 34.163 53.133

128, 8 * 8 34.050 52.731
256, 8 * 8 33.932 52.616
512, 8 * 8 34.850 53.112

32, 16 * 16 32.310 41.131
64, 16 * 16 32.093 40.829

128, 16 * 16 32.968 41.219
256, 16 * 16 32.229 41.246
512, 16 * 16 32.806 40.705

Table : LU decomposition
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Conclusion

Concluding remarks

Observations

Most computer programs that we write are far to make an efficient
use of the targeted hardware

CUDA has brought supercomputing to the desktop computer, but is
hard to optimize even to expert programmers.

High-level models for accelerator programming, like OpenACC,
OpenCL and MetaFork are an important research direction.

Our current work

MetaFork-to-CUDA generates kernels depending on program
parameters.

This is feasible thanks to techniques from symbolic computation.

Implementation is preliminary; yet experimental results are promising.

We still need to better integrate MetaFork-to-CUDA into the
PPCG framework (work in progress).
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Our project web sites

www.bpaslib.org www.metafork.org

www.cumodp.org www.regularchains.org
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