
MetaFork: A Compilation Framework for
Concurrency Platforms Targeting Multicores

Presented by
Xiaohui Chen

Joint work with
Marc Moreno Maza, Sushek Shekar & Priya Unnikrishnan

University of Western Ontario, Canada

IBM Toronto Lab
Sept 29, 2014

Plan

1 Motivation

2 MetaFork: fork-join constructs and semantics

3 MetaFork: interoperability between CilkPlus and OpenMP

4 MetaFork: experimentation

5 Conclusion

Motivation

Plan

1 Motivation

2 MetaFork: fork-join constructs and semantics

3 MetaFork: interoperability between CilkPlus and OpenMP

4 MetaFork: experimentation

5 Conclusion

Motivation

Background

Fork-join model

The fork-join execution model is a model of computations where
concurrency is expressed as follows.

A parent gives birth to child tasks. Then all tasks (parent and
children) execute code paths concurrently and synchronize at the
point where the child tasks terminate.

On a single core, a child task preempts its parent which resumes its
execution when the child terminates.

CilkPlus and OpenMP

CilkPlus and OpenMP are multithreaded extensions of C/C++,
based on the fork-Join model and primarily targeting shared memory
architectures.

Motivation

Motivation: interoperability

Challenge

Different concurrency platforms (e.g: Cilk and OpenMP) can
hardly cooperate at run-time since their schedulers are based on
different strategies (work stealing vs work sharing).

This is unfortunate: there is, indeed, a real need for interoperability.

Example:

In the field of symbolic computation:
• the DMPMC (TRIP project) library provides sparse polynomial

arithmetic and is entirely written in OpenMP,
• the BPAS (UWO) library provides dense polynomial arithmetic is

entirely written in Cilk.

We know that polynomial system solvers require both sparse and
dense polynomial arithmetic and thus could take advantage of a
combination of the DMPMC and BPAS libraries.

Motivation

Motivation: comparative implementation

Challenge

Performance bottlenecks in multithreaded programs are very hard to
detect:

• algorithm issues: low parallelism, high cache complexity
• hardware issues: memory traffic limitation
• implementation issues: true/false sharing, etc.
• scheduling costs: thread/task management, etc.
• communication costs: thread/task migration, etc.

We propose to use comparative implementation. for narrowing
performance bottlenecks.

Code Translation:

Of course, writing code for two concurrency platforms, say P1, P2, is
clearly more difficult than writing code for P1 only.

Thus, we propose automatic code translation between P1 and P2.

MetaFork: fork-join constructs and semantics

Plan

1 Motivation

2 MetaFork: fork-join constructs and semantics

3 MetaFork: interoperability between CilkPlus and OpenMP

4 MetaFork: experimentation

5 Conclusion

MetaFork: fork-join constructs and semantics

MetaFork

The language

The MetaFork language is an extension of C/C++ and a
multithreaded language based on the fork-join concurrency model.

MetaFork differs from the C language only by its parallel
constructs.

The semantics of the parallel constructs of MetaFork are formally
stated by defining the serial C elision of a MetaFork program.

By its parallel constructs, the MetaFork language is currently a
super-set of CilkPlus and OpenMP and offers counterparts for the
following widely used parallel constructs of OpenMP: #pragma omp

parallel, #pragma omp task, #pragma omp sections,
#pragma omp section, #pragma omp for, #pragma omp

taskwait, #pragma omp barrier, #pragma omp single and
#pragma omp master.

MetaFork: fork-join constructs and semantics

MetaFork

The compilation framework

Today, our experimental framework includes translators between
CilkPlus and MetaFork (both ways) and, between OpenMP
and MetaFork (both ways).

Hence, through MetaFork, we perform program translations
between CilkPlus and OpenMP (both ways).

The MetaFork language is rich enough to capture the semantics of
large bodies of OpenMP code, such as the Barcelona OpenMP
Tasks Suite and translate faithfully to CilkPlus each of the BOTS
test cases.

MetaFork: fork-join constructs and semantics

MetaFork constructs for parallelism

MetaFork has four parallel constructs:

meta fork 〈function− call〉
• we call this construct a function

spawn,
• it is used to express the fact that

a function call is executed by a
child thread, concurrently to the
execution of the parent thread,

• on the contrary of CilkPlus, no
implicit barrier is assumed at the
end of a function spawn.

Example:

long fib_par(long n) {

long x, y;

if n < 2 return (n);

x = meta_fork fib_par(n-1);

y = fib_par(n-2);

meta_join;
return (x+y);

}

meta for (start, end, stride) 〈loop− body〉

• we call this construct a parallel for-loop,

• the execution of the parent thread is
suspended when it reaches meta for and
resumes when all children threads have
completed their execution,

• there is an implicit barrier at the end of
the parallel area;

Example:

void test() {

int a[N];

meta_for(int i=0; i<N; i++)

{

a[i] = i;

}

}

MetaFork: fork-join constructs and semantics

MetaFork constructs for parallelism

meta fork [shared(variable)] 〈body〉
• we call this construct a parallel region,
• is used to express the fact that a block is executed by a child thread,

concurrently to the execution of the parent
• no equivalent in CilkPlus.

Example:

void main() {

int sum_a=0;

int a[5] = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)

sum_a += a[i];

}

foo();

}
meta join

• this indicates a synchronization point.

MetaFork: fork-join constructs and semantics

Counterpart directives in CilkPlus & OpenMP

CilkPlus

cilk spawn

no construct for parallel regions

cilk for

cilk sync

OpenMP

pragma omp task/sections/single/master

pragma omp for

pragma omp taskwait/barrier

MetaFork: fork-join constructs and semantics

MetaFork data attribute rules (1/2)

MetaFork terminology:

Local and non-local variables

Consider a parallel region with block Y (or a parallel for-loop with loop
body Y). X denotes the immediate outer scope of Y . We say that X is
the parent region of Y and that Y is a child region of X.
A variable v defined in Y is said local to Y otherwise we call it an
non-local variable for Y .
Let v be a non-local variable for Y . Assume v gives access to a block of
storage before reaching Y . (Thus, v cannot be a non-initialized pointer.)

Shared and private variables

We say that v is shared by X and Y if its name gives access to the
same block of storage in both X and Y ; otherwise we say that v is
private to Y .
If Y is a parallel for-loop, we say that a local variable w is shared by Y
whenever the name of w gives access to the same block of storage in
any loop iteration of Y ; otherwise we say that w is private to Y .

MetaFork: fork-join constructs and semantics

MetaFork data attribute rules (2/2)

Data attribute rules of meta fork:

A non-local variable v which gives access to a block of storage before
reaching Y is

• shared between the parent X and the child Y whenever v is (1) a global
variable or (2) a file scope variable or (3) a reference-type variable or (4)
declared static or const, or (5) qualified shared.

• otherwise v is private to the child.

In particular, value-type variables (that are not declared static or
const, or qualified shared and, that are not global variables or file
scope variables) are private to the child.

Data attribute rules of meta for:

A non-local variable which gives access to a block of storage before
reaching Y is shared between parent and child.
A variable local to Y is

• shared by Y whenever it is declared static.
• otherwise it is private to Y .

In particular, loop control variables are private to Y .

MetaFork: fork-join constructs and semantics

MetaFork semantics of parallel constructs

Semantics of MetaFork

To formally define the semantics of each of the parallel constructs in
MetaFork, we introduce the serial C-elision of a MetaFork
program M as a C program whose semantics define those of M.
For spawning a function call or executing a parallel for-loop,
MetaFork has the same semantics as CilkPlus. In these cases,
the serial C-elision is obtained by replacing

• meta fork with the empty string,
• meta for with for.

The non-trivial part is to define the serial C-elision of a parallel region
in MetaFork, that is, when the meta fork keyword is followed by a
block of code.
In the dissertation, we formally define the serial C elision of the
meta fork construct when applied to a code block. This is done
essentially by wraping this code block into a function which is, then,
called.

MetaFork: interoperability between CilkPlus and
OpenMP

Plan

1 Motivation

2 MetaFork: fork-join constructs and semantics

3 MetaFork: interoperability between CilkPlus and OpenMP

4 MetaFork: experimentation

5 Conclusion

MetaFork: interoperability between CilkPlus and
OpenMP

Original CilkPlus code and translated MetaFork code

long fib(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

x = cilk spawn fib(n-1);

y = fib(n-2);

cilk sync;
return (x+y);

}

}

long fib(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

x = meta fork fib(n-1);

y = fib(n-2);

meta join;
return (x+y);

}

}

long fib(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

#pragma omp task shared(x)
x = fib(n-1);

y = fib(n-2);

#pragma omp taskwait
return (x+y);

}

}

MetaFork: interoperability between CilkPlus and
OpenMP

Original OpenMP code and translated CilkPlus code

int main()

{

int a[N];

#pragma omp parallel
#pragma omp for
for(int i=0;i<N;i++)

{

a[i] = i;

}

}

int main()

{

int a[N];

meta_for(int i=0;i<N;i++)

{

a[i] = i;

}

}

int main()

{

int a[N];

cilk_for(int i=0;i<N;i++)

{

a[i] = i;

}

}

MetaFork: interoperability between CilkPlus and
OpenMP

Original OpenMP code and translated CilkPlus code

int main(){

int sum_a=0, sum_b=0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

for(int i=0; i<5; i++)

sum_a += a[i];

}

#pragma omp section
{

for(int i=0; i<5; i++)

sum_b += b[i];

} } }

}

int main()

{

int sum_a=0, sum_b=0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)

sum_a += a[i];

}

meta_fork shared(sum_b){
for(int i=0; i<5; i++)

sum_b += b[i];

}

meta_join;
}

void fork_func0(int* sum_a,int* a)

{

for(int i=0; i<5; i++)

(*sum_a) += a[i];

}

void fork_func1(int* sum_b,int* b)

{

for(int i=0; i<5; i++)

(*sum_b) += b[i];

}

int main()

{

int sum_a=0, sum_b=0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

cilk_spawn fork_func0(&sum_a,a);

cilk_spawn fork_func1(&sum_b,b);

cilk_sync;
}

MetaFork: experimentation

Plan

1 Motivation

2 MetaFork: fork-join constructs and semantics

3 MetaFork: interoperability between CilkPlus and OpenMP

4 MetaFork: experimentation

5 Conclusion

MetaFork: experimentation

Experimentation: set up

Source of code

John Burkardt’s Home Page (Florida State University)
http://people.sc.fsu.edu/ %20jburkardt/c src/openmp/openmp.html

Barcelona OpenMP Tasks Suite (BOTS)
Cilk++ distribution examples
Students’ code

Compiler options

CilkPlus code compiled with GCC 4.8 using -O2 -g -lcilkrts -fcilkplus
OpenMP code compiled with GCC 4.8 using -O2 -g -fopenmp

Architecture

Running time on p = 1, 2, 4, 6, 8, . . . processors. All our compiled programs
were tested on :

Intel Xeon 2.66GHz/6.4GT with 12 physical cores and hyper-threading,
sharing 48GB RAM,
AMD Opteron 6168 48core nodes with 256GB RAM and 12MB L3.

MetaFork: experimentation

Validation

Verifying the correctness of our translators was a major requirement.
Depending on the test-case, we could use one or the other following
strategy.

For Cilk++ distribution examples and the BOTS (Barcelona OpenMP
Tasks Suite) examples:

- both a parallel code and its serial elision were executed and the
results were compared,

- since serial elisions remain unchanged by our translators, the
translated programs could be verified by the same procedire.

For FSU (Florida State University) examples:

- Since these examples do not include a serial elision of the parallel
code, they are verified by comparing the result between the original
program and translated program.

MetaFork: experimentation

Experimentation: three experiences

Comparing two hand-written codes via translation
• For each test-case, we have a hand-written OpenMP program and a

hand-written CilkPlus program
• For each test-case, we observe that one program (written by a student) has

a performance bottleneck while its counterpart (written by an expert
programmer) does not.

• We translate the efficient program to the other language, then check
whether it incurs the same performance bottleneck as the inefficient
program. This generally help narrowing the issue.

Automatic translation of highly optimized code
• For each test-case, we have either a hand-written-and-optimized CilkPlus

program or a hand-written-and-optimized OpenMP program.
• We want to determine whether or not the translated programs have similar

serial and parallel running times as their hand-written-and-optimized
counterparts.

Parallelism overheads

MetaFork: experimentation

Comparing hand-written codes (1/2)

Figure : Mergesort: n = 5 · 108

Different parallelizations of the same
serial algorithm (merge sort).
The original OpenMP code (written
by a student) misses to parallelize
the merge phase (and simply spawns
the two recursive calls) while the
original CilkPlus code (written by
an expert) does both.
On the figure, the speedup curve of
the translated OpenMP code is as
theoretically expected while the
speedup curve of the original
OpenMP code shows a limited
scalability.
Hence, the translated OpenMP
(and the original CilkPlus
program) exposes more parallelism,
thus narrowing the performance
bottleneck in the original
hand-written OpenMP code.

MetaFork: experimentation

Comparing two hand-written codes (2/2)

Figure : Matrix inversion: n = 4096

Here, the two original parallel programs
are based on different serial algorithms
for matrix inversion.
The original OpenMP code uses
Gauss-Jordan elimination algorithm
while the original CilkPlus code uses
a divide-and-conquer approach based on
Schur’s complement.
The code translated from CilkPlus to
OpenMP suggests that the latter
algorithm is more appropriate for
fork-join multithreaded languages
targeting multicores.

MetaFork: experimentation

Interoperability: automatic translation of highly optimized code

Test Input size CilkPlus OpenMP

T1 T16 T1 T16

8-way 2048 0.423 0.231 0.421 0.213
Toom-Cook 4096 1.849 0.76 1.831 0.644

8192 9.646 2.742 9.241 2.774
16384 39.597 9.477 39.051 8.805
32768 174.365 34.863 172.562 33.032

DnC 2048 0.874 0.259 0.867 0.299
Plain 4096 3.95 1.264 3.925 1.123
Polynomial 8192 18.196 3.335 18.154 4.428
Multiplication 16384 77.867 12.778 75.885 12.674

32768 331.351 55.841 332.126 55.925

Table : BPAS timings with 1 and 16 workers: original CilkPlus code and translated OpenMP code

MetaFork: experimentation

Parallelism overhead measurements

Test Input size CilkPlus OpenMP

Serial T1 Serial T1

Protein alignment (for) 100 568.07 566.10 568.79 568.16
quicksort 5 · 108 94.42 96.23 94.15 97.20
prefixsum 1 · 109 27.06 28.48 27.14 28.42
Fibonacci 1 · 109 96.24 96.26 97.56 97.69
DnC MM 1 · 109 752.04 752.74 751.79 750.34
Mandelbrot 500 × 500 0.64 0.64 0.64 0.65

Table : Timings on AMD 48-core: underlined timings refer to original code and non-underlined timings to
translated code.

Experiment conclusion

Our experimental results suggest that our translators can be used to narrow performance
bottlenecks.
The speed-up curves of the original and translated codes either match or have similar shape.
Nevertheless, in some cases, either the original or the translated program outperforms its
counterpart.

Conclusion

Plan

1 Motivation

2 MetaFork: fork-join constructs and semantics

3 MetaFork: interoperability between CilkPlus and OpenMP

4 MetaFork: experimentation

5 Conclusion

Conclusion

Concluding remarks

Summary

We presented a platform for translating programs between multithreaded
languages based on the fork-join parallelism model.
Translations are performed via MetaFork, a language which borrows from
CilkPlus and OpenMP.
Translation process does not add overheads on the tested examples.
Project website: www.metafork.org.

Work in progress

The MetaFork language is being migrated to clang platform
The MetaFork language is extending to pipeline parallelism and accelerator
model
The MetaFork framework is being enhanced with automatic generation of
parametric parallel programs

Acknowledgments

We are grateful to the Compiler Development Team at the IBM Toronto Labs, in
particular Abdoul-Kader Keita for the support and advice.

www.metafork.org

	Motivation
	MetaFork: fork-join constructs and semantics
	MetaFork: interoperability between CilkPlus and OpenMP
	MetaFork: experimentation
	Conclusion

